

TRACKING THE SOURCES OF GROUNDWATER THROUGH WELL PROFILING

Presented By Noah Heller, MS PG President, BESST, Inc. 50 Tiburon Street, Suite 7 San Rafael, CA 94901 O: 415.453.2501 M: 415.302.7354

nheller@besst-inc.com

www,besst-inc.com

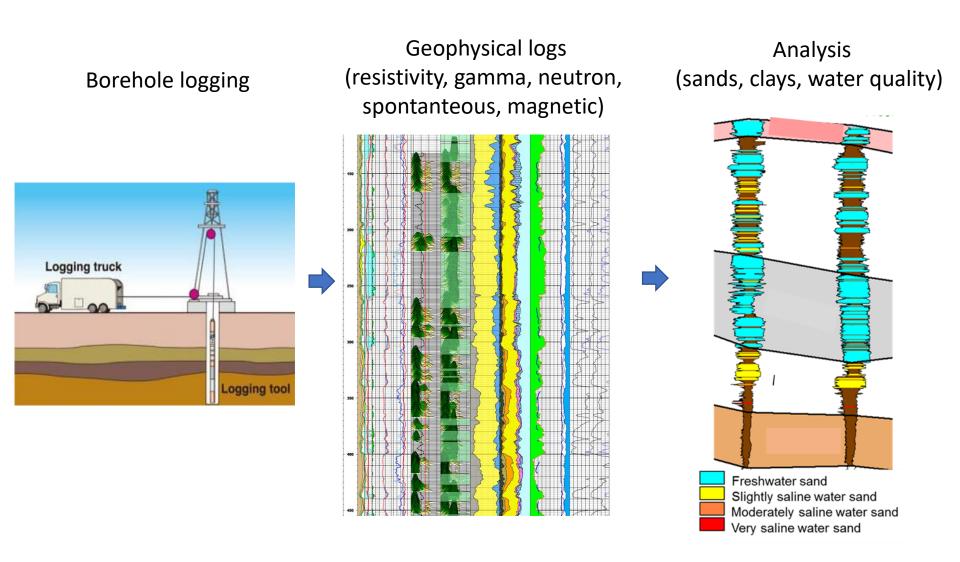
Steve C. Young Principal Geoscientist / Engineer INTERA Incorporated 9600 Great Hills Trail, Suite 300W Austin, TX 78759 www.intera.com

> syoung@intera.com (512) 425-2071 office (512) 425-2099 fax (512) 635-0059 cell

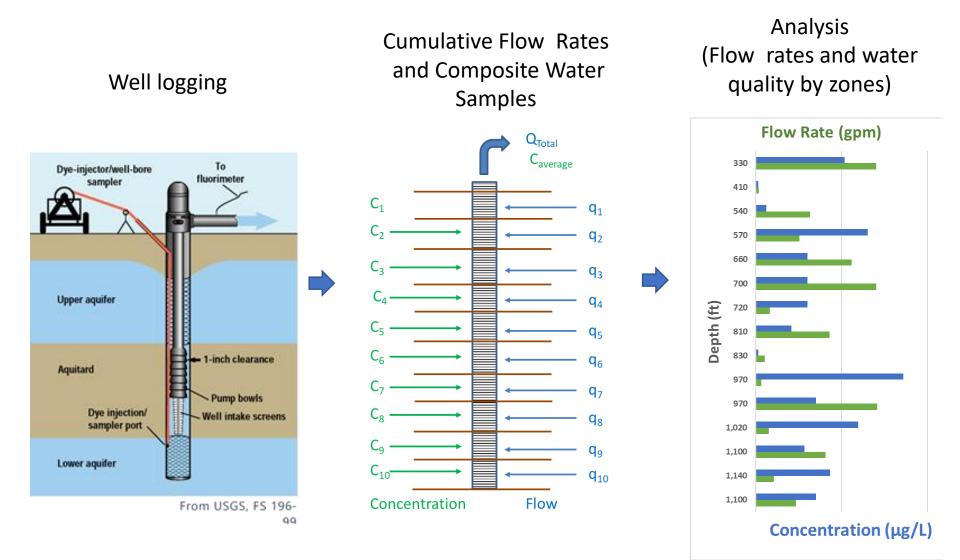
Well Profiling

Introduction

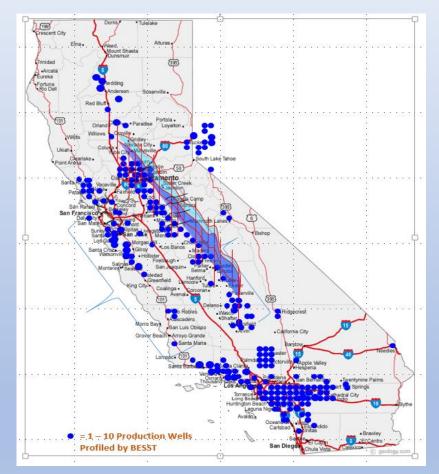
Potential Benefits



How to

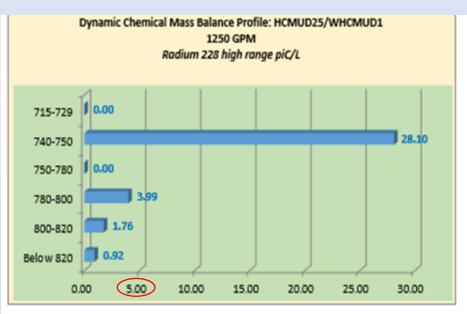

Results

Borehole Profiling Using Geophysical Logs



Well Profiling Using Tracer Pulse and Microsampling Technology

Reasons for Well Profiling

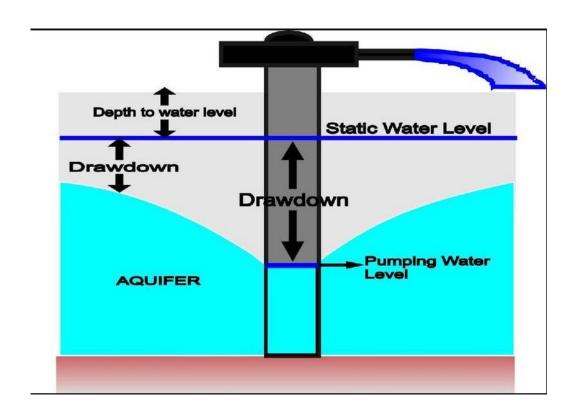

- Treatment Avoidance at Existing Wells
 - identify zones where "bad" water exists
 - modify well to block or reduce entry of "bad" water
- Optimal Design for Future Wells
 - well construction specifications to avoid pumping "bad" water
 - depth to base of fresh water

Approximately 800 Wells have been Profiled by BESST in California

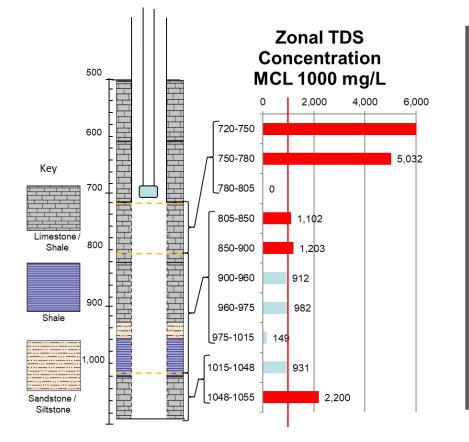
Reasons for Well Profiling

- Determine Potential for Comingling of different water qualities
 - Vertical flows in unpumped wells between zones in long well screens
 - Range in TDS concentrations
 - Locations highs for rads, arsenic, iron
- Understand Aquifer Flow System
 - Groundwater availability
 - Well field design

Flow Profile for Houston Well Radium Standard (5 piC/L)



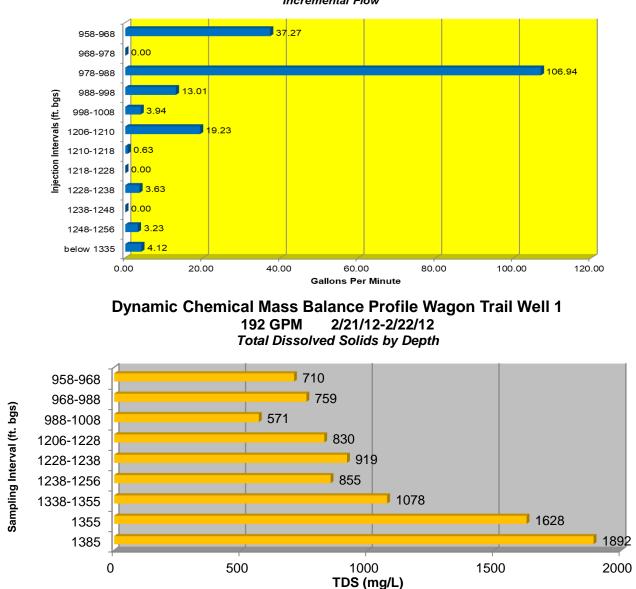
Tracking Groundwater Flow Under Dynamic Steady State Pumping Conditions



<section-header><text><text>

- Tracer Pulse Flowmeter Test
- 1. Highly detailed, accurate flow and chemistry profile.
- 2. Very sensitive to detecting small zonal flow.
- 3. Low overall cost.
- 4. Groundwater supply well as a "monitoring 12".

Trinity Aquifer

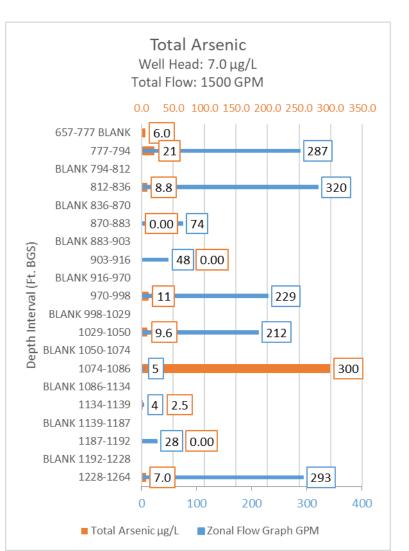


Sample Depth	Interval	Incremental Flow (Q1-Q2)	
Sample	Ft BGS	GPM	
715	720-750	0.5	
750	750-780	0.1	
785	780-805	0.1	
805	805-850	4.0	
850	850-900	2.6	
<mark>900</mark>	<mark>900-960</mark>	<mark>36.2</mark>	
<mark>960</mark>	<mark>960-975</mark>	<mark>32.3</mark>	
<mark>975</mark>	<mark>975-1015</mark>	<mark>15.0</mark>	
1015	1015-1048	11.7	
1048	1048-1055	0.2	

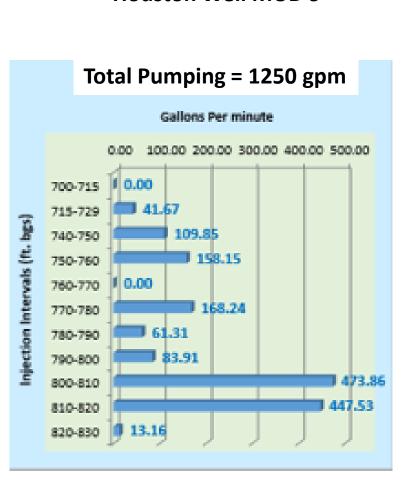
Trinity Aquifer

Dynamic Flow Profile: Wagon Trail Well 1

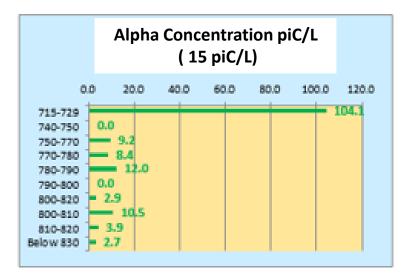
192 GPM 2/20/12 Incremental Flow

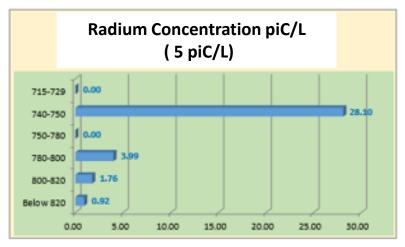


Gulf Coast Aquifer


Houston Well Morton Road MUD Gross Alpha

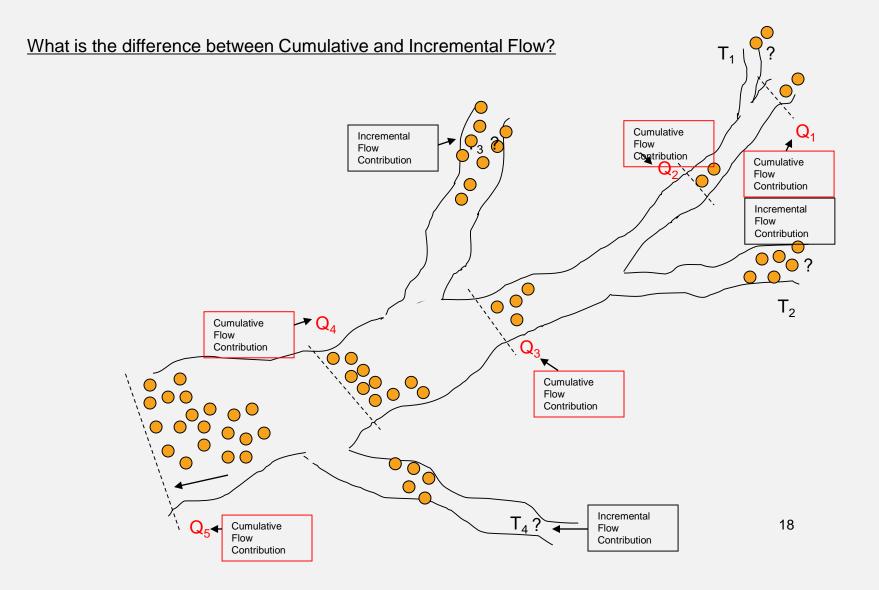
MUD #81, Well #4 Arsenic



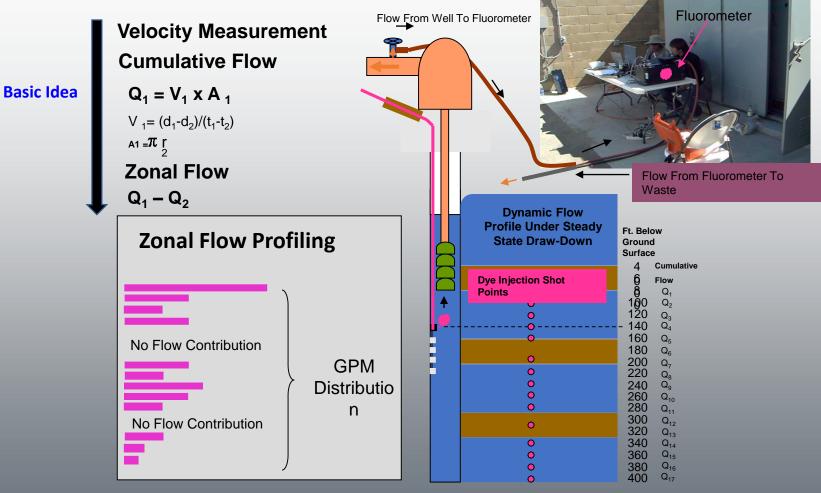


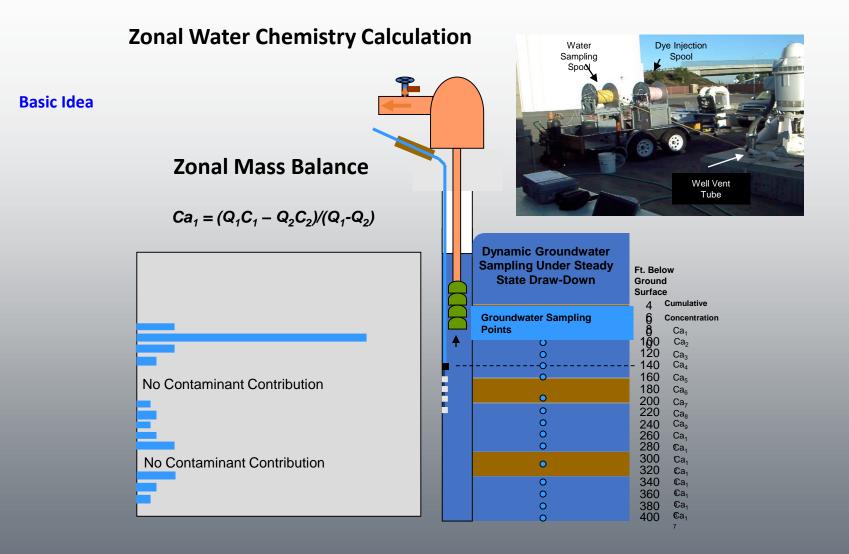
Gulf Coast Aquifer

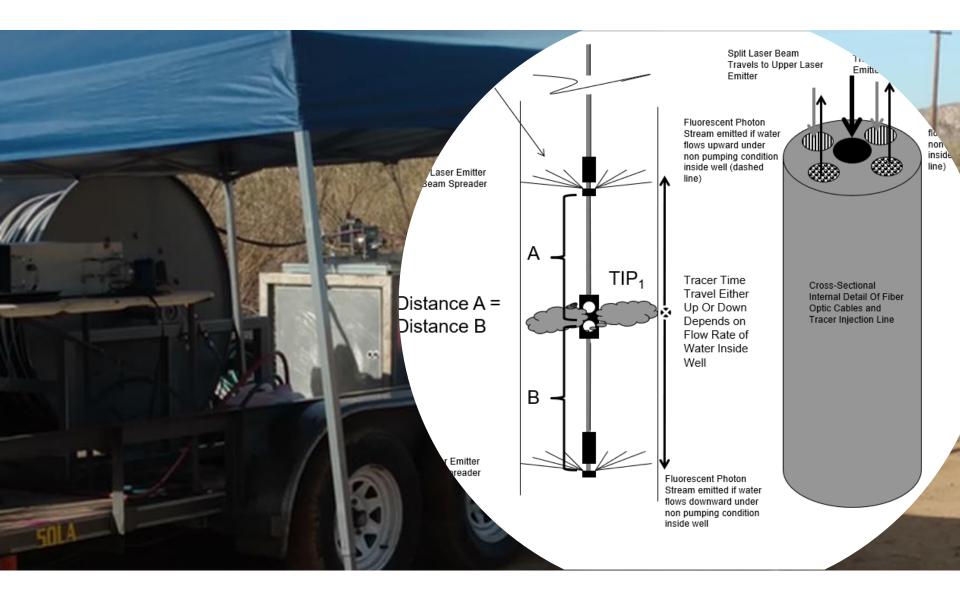
Houston Well MUD 9

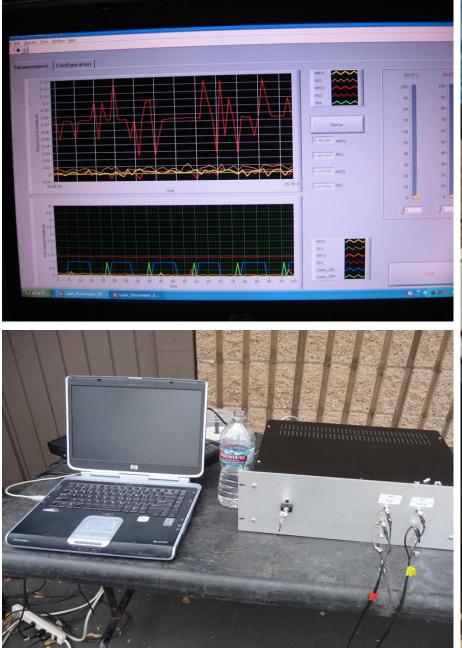


ZONAL SOURCES OF GROUNDWATER MEASURED UNDER PUMPING CONDITIONS


17

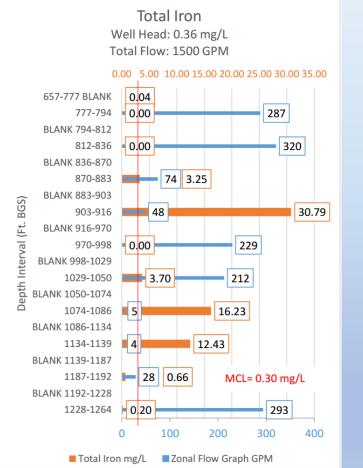

:	:	: :	<u>: : :</u>	: :	: :	: :
Well Head AV	oncentration /G: 202 (μg/L) :00.0 1000.0 1500.0	Zonal Color Concentration Well Head AVG: 14 (PtCo Unit) 0.0 50.0 100.0 150.0	Zonal Orthophosphate Concentration Well Head AVG: 0.64 (mg/L)	Zonal TOC Concentration Well Head AVG: 0.9 (mg/L) 0.0 2.0 4.0 6.0	Zonal Ammonia (N) Concentration Well Head AVG: 0.05 (mg/L)	Zonal Nitrate (N) Concentration Well Head AVG: 0.11 (mg/L)
370-375		370-375	0.0 2.0 4.0 6.0		0.0 0.1 0.2 0.3 0.4	0.0 0.5 1.0
375-385 -0.0	:	375-386 0.0	370-375 -0.0	375-386 -0.0	370-375 🔲 0.0	370-375 =-0.1
BLANK		BLANK	375-386 2.3	BLANK	375-386 -0.0	375-386 0.8
395-410 0.0		395-410 0:0	BLANK	395-410	BLANK	BLANK
410-420		410-420	395-410 -0.8	410-420 1.1	395-410 0.0	395-410 0.3
420-430	:	420-430	410-420	420-430	410-420 0.2	410-420 -0.0
BLANK		BLANK	420-430	BLANK	420-430	420-430
		0 490-495 56.2	BLANK	or 490-495 1.6	BLANK	BLANK
월 495-510 -0.0	:	^β ^β ⁴⁹⁵⁻⁵¹⁰ −0.0−	ត្រូ 490-495 1.6	495-510		3. 490-495 ■0.0
E BLANK	:	E BLANK	∉ ⁴⁹⁵⁻⁵¹⁰ 0.7	BLANK	g 495-510 0.4	∉ 495-5100.2
은 월 520-530	:	2 520-530 = 13.7	BLANK	₽ ₩ 520-530 ₩ 0.0	BLANK	BLANK
£ 530-540 ■ 19		£ 530-540 23,5	<u><u> </u></u>	돌 돌 530-540 -0.0	<u>≝</u> 520-530 −0:0	<u>≝</u> 520-530 ⊫0:0
G 540-550		g 540-550	530-540 -0.9	540-550	£ 530-540 0.1	£ 530-540 - 0.2
550-560	1094.2	\$50-560	å 540-550	550-560 =0.0	a 540-550	540-550 0.3
BLANK	1034.2	BLANK	550-560 5.3 BLANK	BLANK	550-560 =0.0	BLANK
594-600	648-8	594-600	594-600 -0.4	594-600	BLANK 594-600	594-600
600-610	540 S	608-610		600-610	594-600 0.1 600-610	609-619 - 0.1
610-620	885.0	610-620	610-620	610-620	610-620	610-620 0.1
620-630	876.3	620-630 40.0	620-630 -0.6	620-630 3.1	620-630 0.1	620-630 = 0.1
630-640		630-640	630-640 0.7	630-640 5.1	630-640 0.3	630-640 0.2
						:
0.00 20	00.00 400.00 600.00	0.00 200.00 400.00 600.00	0.00 200.00 400.00 600.00	0.00 200.00 400.00 600.00	0.00 200.00 400.00 600.00	:
■ H2S ■ Zo	nal Flow (GPM)	Color 💼 Zonal Flow (GPM)	Orthophosphate Zonal Flow (GPM)	TOC Zonal Flow (GPM)	Ammonia-N Zonal Flow (GPM)	Nitrate-N Zonal Flow (GPM)
		· ·	· · ·		· · ·	· · ·




HOW IT WORKS

Tracking Groundwater Flow Under Ambient Steady State Pumping Conditions

Typical Profile Signatures for Iron and Uranium?


Highly Localized / Stratified Assymetrically

Iron Located at Permeability Barriers

Uranium Associated With Clays

Gulf Coast Aquifer

IRON

HOUSTON TX

California

IRON

DELANO CA

SANTA CRUZ, CA

Iron Zonal Iron Concentrations Well Head Average: Non Detect Well Head Avg: 495 (µg/L) Total Flow: 938 GPM Total Flow: 600 GPM 0.00 1000.00 2000.00 3000.00 4000.00 0.00 0.10 0.20 0.30 0.40 0.50 Pump Intake 200 0.0 2.00 490 - 500 0.00 38 200-215* 78.1 3441.29 69.40 178.4 0.07 = 84 215-260 500 - 515 260-300 0.00 11.0 515 - 540 102 0.42 2.00 300-340 Blank 0.0 Depth Interval (Ft. BGS) BGS) 12.8 0.00 340-350 540 - 580 0.00 191 Depth Interval (Ft. 350-400 0.00 8.0 580 - 600 0.00 139 0.00 9.4 400-420 420-470 Blank 0.0 2.00 600-640 (PI) 0 553.56 61.2 470-510 510-540 0.00 10.0 640 - 660 0.13 102 2.00 540-550 Blank 0.0 660 - 680 0.00 67 550-570 174.35 161.0 28.0 145.00 570-620 680-750 0.00 215 42.0 620-650 170.00 50 100 250 0.0 50.0 100.0 150.0 200.0 Iron mg/L Zonal Flow Graph Referenced GPM Iron µg/L Zonal Flow Graph GPM

Gulf Coast Aquifer RADIONUCLIDE EXAMPLES: HOUSTON TX

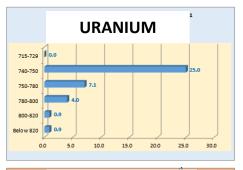
Prepared by Noah Heller, MS PG (CA 5792) / BESST, Inc

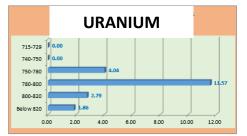
BESST Case Histories of Well Profiling for Radionuclides

Over the past 12 years, BESST has profiled approximately 750 municipal supply wells in California and at various locations in Texas. This experience includes a variety of wells tested for Radionuclides. Our experience to date

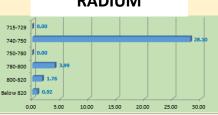
shows that radionuclide contaminants are typically very stratified – showing highly asymmetrical formation distribution. Since radionuclides it is worthwhile to consider well profiling to delineate formation stratification. If concentrations are stratified, then this increases the probability that impacted wells can be hydraulically manipulated to produce compliant groundwater without treatment; or by using a combination of hydraulic well modification with reduced treatment. The examples that follow show zonal chemistry and flow distributions for various well profiling projects where wells have been impacted by radionuclides. The first two examples are for wells in California.

Case History 1: Harris County MUD 25 Well 1

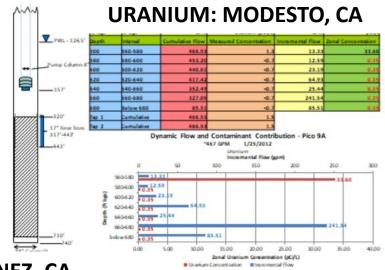

Located in the Houston TX metro area, Harris County MUD 25, Well 1 was zonally profiles for 3 constituents; including a) gross alpha, b) uranium 235, c) radium 228 and d) radium 226. The profiles for each constituent are presented below and all infer a highly stratified distribution within the surrounding formation. Moreover, the highest concentrations of radionucides are associated with minimal flow contribution.

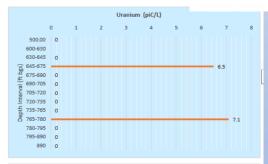

GROSS ALPHA 0.0 20.0 40.0 60.0 80.0 100.0 120.0 715-729 0.0 750-770 9.2 770-780 9.2 770-780 12.0 700-80 0.0 80-810 0.0 800-810 12.0 700-80 0.0 800-810 12.0 700-80 0.0 800-810 12.0 700-80 0.0 800-810 12.0 700-80 0.0 800-810 12.0 700-80 0.0 810-820 1.0 800-800 1.0 800-800





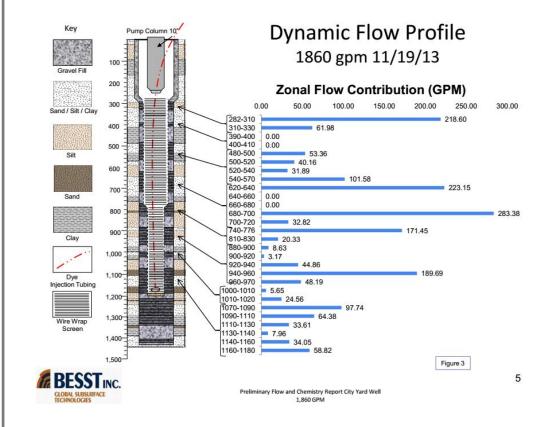
URANIUM 0.31 715-729 1 0.00 740-750 2.96 750-780 780-800 9.74 800-820 2.09 Below 820 0.00 2.00 4.00 6.00 8.00 10.00



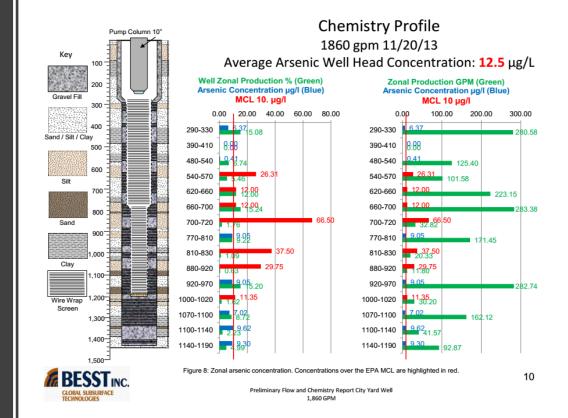

RADIONUCLIDES

GROSS ALPHA: HOUSTON

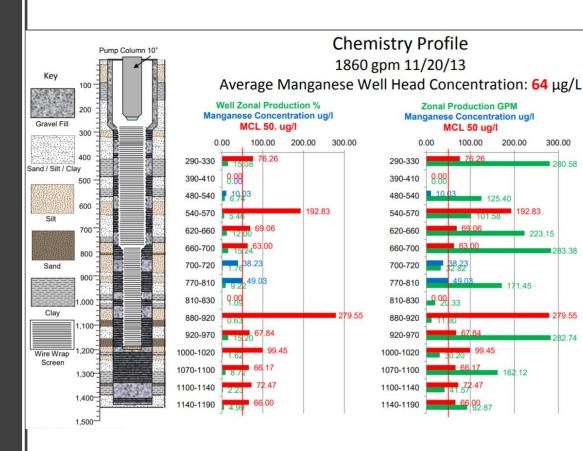
URANIUM; SANTA YNEZ, CA


Zonal Flow Contribution (GPM)

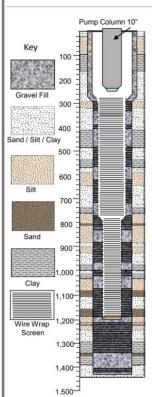
0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 600-630 161.00 630-645 352.19 645-660 _____ 26.64 660-675 81.18 675-690 55.20 690-705 39.97 705-720 127.03 720-735 51.77 735-750 = 17.76 750-765 3.99 765-780 = 16.20 780-795 ____ 20.63 795-TD = 12.45

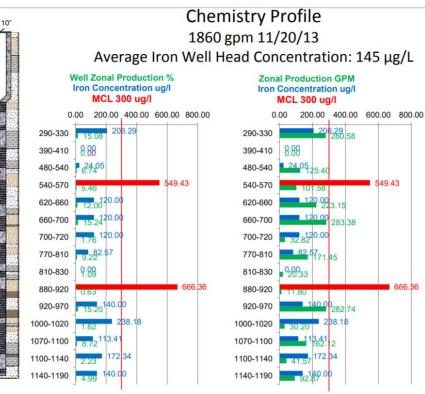

8

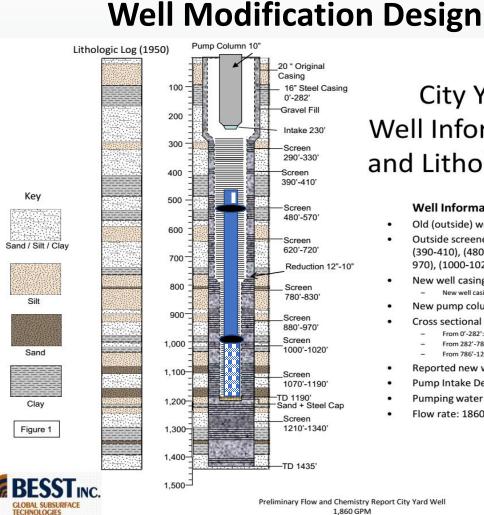
ARSENIC, MANGANESE AND IRON


City of La Palma, CA: Arsenic, Manganese and Iron

ZONAL ARSENIC DATA


ZONAL MANGANESE DATA




279.55

282.74

ZONAL IRON DATA

City Yard Well Information and Lithology Log

Well Information

Old (outside) well casing diameter: 20" -> 14"

Outside screened Intervals (ft. bgs): (290-330), (390-410), (480-570), (620-720), (780-830), (880-970), (1000-1020), (1070-1190)

- New well casing diameter: 16" -> 12" -> 10"
 - -New well casing is constructed with all stainless steel wire wrap.
- New pump column diameter (in): 10" (16" casing)
- Cross sectional area of new well casing:
 - From 0'-282': 1.40 ft2 -
 - From 282'-786': 0.79 ft2 -
 - From 786'-1206' : 0.55 ft2
- Reported new well bottom: 1190 ft. bgs
- Pump Intake Depth: 230 ft bgs
- Pumping water level: 143 ft bgs
- Flow rate: 1860 USG min⁻¹

Preliminary Flow and Chemistry Report City Yard Well 1,860 GPM

NUMIUI

NSF 61 Approved Rubber for Mechanical Packer